
JUMPING JIVE
Project ID: 730884

pySCHED: re-factoring SCHED fromFortran to Python
Deliverable: D8.3Lead beneficiary: JIVE (Authour: Bob Eldering)Submission date: 21-11-2019Dissemination level: Public

Ref. Ares(2019)7261208 - 25/11/2019

1

Contents
1 Introduction 2
2 Re-factoring 22.1 Keyin reader . 32.2 COMMON blocks to Python classes 32.3 Translation of SCHED functions . 4
3 New features 43.1 Automatic catalogue updates . 43.2 DBBC 2 support . 43.3 VEX 2 . 53.4 Experiment intent for scans . 53.5 TSCAL in frequency catalogue . 63.6 Interactive plots . 63.7 Easy installation . 63.8 Command line arguments and readline 73.9 Programmable input . 7
4 Resources 7

This project has received funding from the European Union’s Horizon 2020 research and innovationprogramme under grant agreement No 730884

2

1 Introduction
The program SCHED[1] was written in the early 1980s in order to provide a com-mon, generalised user interface for scheduling VLBI observations. It does so bycombining observing parameters, source catalogues and frequency setup cata-logues, which describe the detailed settings at all different stations. This is byno means trivial, considering that all telescopes are different, in terms of lo-cation, architecture, hardware limitations, equipment and frequency coverage.The resulting schedule comes in the form of a so-called VEX file, for which aninternational standard was defined, a plain-text human-readable equivalent ofa database. This file is sent to the stations, where the control computer parsesthe schedule and translates it into a series of commands to the telescope con-trol system and the recording/transmitting equipment. The decades-old codebase makes the program extremely hard to modify in order to adapt it to themodern-day demands of VLBI networks.
This document describes how we re-factored the SCHED code to be more easilymaintainable (Section 2) and howwe used the re-factored code base to add newfeatures (Section 3). We have called the resulting program pySCHED.

2 Re-factoring
SCHED is written in Fortran 77, an old language with which few programmers orastronomers are familiar these days. Fortran 77 also lacks many features foundin modern high-level languages, most importantly data structures. For thesereasons we have decided to switch to a modern language for pySCHED. Out ofthe modern languages, we have chosen Python to be used in this project. Itsbroad acceptance in the astronomical community, extensive scientific librariesand ease of use make it a natural choice.
Rather than re-writing everything from scratch in Python, we have replacedspecific bits of the Fortran code of SCHED. We have done this by calling theoriginal Fortran code from within Python. We use a program called f2py[2] toassist us. F2py takes Fortran code and generates a Python extension module.This Python module exposes the Fortran functions as Python functions and theFortran COMMON blocks as Python classes. Using f2py makes it possible tocall SCHED functions from within Python code and replace specific bits of codewhile maintaining backwards compatibility with SCHED. This makes the transi-

This project has received funding from the European Union’s Horizon 2020 research and innovationprogramme under grant agreement No 730884

3

tion from using SCHED to using pySCHED easier.

2.1 Keyin reader
The SCHED distribution includes a set of catalogues of source positions and sta-tion configuration information, which are specified using the Keyin format. Thespecification of the Keyin format is informal, in practice the precise specificationis the interpretation that SCHED gives a Keyin file when it is read. Fortran is nota language well suited to parsing and string handling, and parsers developedin Fortran can be hard to maintain and often (as here) do not follow a preciseformal specification.
Therefore we have replaced the parser with a version written fully in Python.The parsing is done by recursive descent, while tokenising is done by regularexpressions. This process is a lot easier to read and maintain than the state-machine process of the parser written in Fortran.
The output of the Python parser is in the JSON format[3]. Parsing large Keyinfiles (the source catalogue) can be rather slow. Therefore we store the JSON out-put of the parsing in a cache. Very fast parsers for JSON are readily available inPython.

2.2 COMMON blocks to Python classes
As said before, Fortran 77 does not support proper data structures. Where in amodern programming language one would use an array of structures contain-ing data elements, SCHED uses a distinct array per data element. The group-ing of these data elements is expressed in SCHED by using the same indexinginto the corresponding arrays. These groupings match the SCHED cataloguesclosely. We have made Python catalogue classes, which make this grouping ex-plicit. These catalogue classes all share methods to read and write from/to theCOMMON blocks as exposed by f2py. This explicit grouping of data elementsmakes code that accesses these elements in Python easier to maintain. How-ever, any time we call a Fortran function, we need to synchronise the Pythoncatalogue classes with the Fortran COMMONblocks. Whenwe call many Fortranfunctions in quick succession from within the Python code, this synchronisationcan take up a lot of time. Therefore we have also created a method to accessthe COMMON blocks directly through the catalogue classes. Using this methodis slightly slower per access to the data elements, but it eliminates the need tosynchronise the catalogue objects when calling Fortran functions.

This project has received funding from the European Union’s Horizon 2020 research and innovationprogramme under grant agreement No 730884

4

2.3 Translation of SCHED functions
Using f2py allows us to call Fortran functions from Python code, but we do notmodify the SCHED Fortran code to call Python code. This means that when wewant to replace a bit of Fortran code, we also need to translate all functions thatcall that bit of code. In the course of these developments, Fortran functionsrepresenting approximately 63 thousand lines of code have been translated toPython, while Fortran functions that are called from Python represent approxi-mately 223 thousand lines of code.

3 New features
Using the re-factoring and transition to Python, described in the previous sec-tion, we have added many features to pySCHED. These features are describedin this section.

3.1 Automatic catalogue updates
Since the catalogues are included in the distribution of SCHED, updating themcan be a slow process. In scheduling the European VLBI Network[4] (EVN) ex-periments, the work-around for this problem has been to email the principal in-vestigator (PI) up-to-date catalogue files. Obviously, this has the disadvantagesthat these updates are not available for the users in general and only availablefor the PI when the time to schedule the experiment has come.
PySCHED is still distributed with a set of catalogues, but it also downloads up-dates to the catalogues on start-up. This update process uses the git versioncontrol software[5], so the amount of data transferred to download updates isminimized. In case no internet access is available, the update process will sim-ply be skipped. So pySCHED still functions normally without internet access.Updates to the catalogues can be shared with all pySCHED users quickly thisway.

3.2 DBBC 2 support
The main motivation to start work on pySCHED was the lack of support for thedigital base band converter (DBBC) version 2 in SCHED. The consequence of thislack of support is that the intermediate frequency (IF) parameters have to bespecified manually for each station. PySCHED has full support for the the DBBC

This project has received funding from the European Union’s Horizon 2020 research and innovationprogramme under grant agreement No 730884

5

2 and can determine the IF parameters from the frequency catalogue entries.However, since this work-around for SCHED has been in effect for a couple ofyears, the frequency catalogues had never been updated for the new DBBC 2.We have taken the manual input of IF parameters for the last year of EVN ex-periments and computed the corresponding frequency catalogue entries. Thiscatalogue update is distributed to the users through the automatic method de-scribed above.

3.3 VEX 2
VEX (VLBI EXperiment) is a standard for expressing VLBI experiment schedules.Schedules in VEX format are used by most VLBI telescopes. SCHED can createVEX schedules and this is its default output format. The current version of thestandard is 1.5[6], which has been in use since the late 1990s.
An update to the standard is in progress and nearing completion[7]. This newversion will be released as version 2. The main goal of this update is to supporta wider range of VLBI data acquisition hardware as version 1.5 is not capable ofproperly describing the current generation of VLBI equipment. This is achievedby the introduction of a much more flexible description of equipment and howthis equipment is connected together. This makes it much easier to specifyschedules for data acquisition systems that consist of multiple parallel (digital)back-ends and/or recorders. But VEX 2 includes many additional improvementssuch as support for complex sampling, observation of spacecraft, specificationof intent, etc.
PySCHED writes both a VEX 2 and VEX 1.5 file. The code generating the VEXfiles is written from scratch in Python. However, the Fortran code to write VEX1.5 files is still included in pySCHED, because some users might depend on com-ments and specific formatting of the VEX file to encode information that couldnot be otherwise encoded in VEX 1.5. Most of these problems are solved in VEX2.

3.4 Experiment intent for scans
Usually, during real-time correlation, multiple experiments are combined intoone observing run. These experiments are combined during the schedulingphase and split manually during post-processing of the correlated data. Wewant to automate this process using the intent feature of VEX 2.

This project has received funding from the European Union’s Horizon 2020 research and innovationprogramme under grant agreement No 730884

6

Therefore in pySCHED we have added a Keyin keyword: SCANEXPS. Using thiskeyword, the scheduler can assign a scan to one or more experiments (multipleexperiments are possible when a calibrator scan is shared between two con-secutive experiments). This will be reflected in the VEX 2 output by the intentkeyword for scans. Using such a VEX file, the post-processing software can nowautomatically split the correlator output data into experiments.

3.5 TSCAL in frequency catalogue
The station catalogue has a keyword, TSCAL, this lets (py)SCHED know when thestation measures system temperatures. The options for this keyword are “gap”and “cont” that indicate the system temperature measurements, or at least calmeasurements, are done in the gap between scans or continuously during ob-serving.
However for some EVN stations, the system temperaturemeasurementsmethoddepends on the receiver installed in the telescope. Therefore pySCHED hasadded the same keyword to the frequency catalogue, which overwrites the sta-tion level TSCAL value when specified. This prevents the need to use a differentstation catalogue file depending on the receiver used.

3.6 Interactive plots
SCHED uses PGPLOT[8] to create both plots and the graphical user interface(GUI) to initiate these plots. Installing PGPLOT and linking it to SCHED can bequite a hassle, so for pySCHEDwe usemodern GUI (Qt[9]) and plotting (Matplotlib[10])libraries. This results in a more easily usable GUI to initiate the plots and moreinteractive plots.

3.7 Easy installation
Installing SCHED involves picking amake file from a selection of make files madeavailable for different types of systems. In some cases no make file completelymatches your system and some manual editing of the best match is required.PySCHED is registered as a PyPI[11] project. Which makes installing pySCHEDan easy one-liner. For users who prefer to install Python libraries in separatedwork spaces, we profile a conda[12] environment file.

This project has received funding from the European Union’s Horizon 2020 research and innovationprogramme under grant agreement No 730884

7

3.8 Command line arguments and readline
The typical usage of SCHED is to create a file with the input schedule and ei-ther run SCHED with input redirection from this file or run SCHED and use the
SCHEDULE keyword to point to the input file. The second method requires typingthe input file name on every start of SCHED, but it is the only way to make useof the “restart” feature available in the plotting control window. Additional com-mands have to be either, depending on the run method used, entered into theinput file or added as keywords on the SCHED input.
In pySCHED we have added two features that make these basic interactionsmore convenient. The first is the addition of command line arguments, for ex-ample, to enable plotting or to set the input file name. The usage of old styleVEX 1.5 printing (as discussed in Section 3.3) is also controlled with a commandline argument. The second feature is the usage of the readline module. Thismodule allows users to edit the pySCHED commands as they are typed in us-ing for example the cursor keys. The readline module also comes with historyfacilities, the input history is saved between runs of pySCHED.

3.9 Programmable input
A more advanced way to provide input to pySCHED is to use the template com-mand line argument. In this case the input to pySCHED is first processed bythe template engine provided by the bottle[13] module. This allows the user tomix Keyin format input with Python code, such that complex schedules can beexpressed succinctly.

4 Resources
The source code of pySCHED is available in multiple formats on GitHub:

• As zip file: https://github.com/jive-vlbi/sched/archive/v1.3.0.zip

• As gzipped tarball: https://github.com/jive-vlbi/sched/archive/v1.
3.0.tar.gz

• The complete git tree: https://github.com/jive-vlbi/sched.git

Within the source code, the newly written Python code lives in the directory
src/pysched/.

This project has received funding from the European Union’s Horizon 2020 research and innovationprogramme under grant agreement No 730884

https://github.com/jive-vlbi/sched/archive/v1.3.0.zip
https://github.com/jive-vlbi/sched/archive/v1.3.0.tar.gz
https://github.com/jive-vlbi/sched/archive/v1.3.0.tar.gz
https://github.com/jive-vlbi/sched.git

8

The installation and usage instructions are described in: https://github.com/
jive-vlbi/sched/blob/v1.3.0/README.md

References
[1] http://www.aoc.nrao.edu/~cwalker/sched/sched.html

[2] https://docs.scipy.org/doc/numpy/f2py/

[3] http://www.json.org/

[4] https://www.evlbi.org/

[5] https://git-scm.com/

[6] http://www.vlbi.org/vex/

[7] https://safe.nrao.edu/wiki/bin/view/VLBA/Vex2

[8] http://www.astro.caltech.edu/~tjp/pgplot/

[9] https://www.qt.io/

[10] https://matplotlib.org/

[11] https://pypi.org/

[12] https://www.anaconda.com/

[13] https://bottlepy.org/

This project has received funding from the European Union’s Horizon 2020 research and innovationprogramme under grant agreement No 730884

https://github.com/jive-vlbi/sched/blob/v1.3.0/README.md
https://github.com/jive-vlbi/sched/blob/v1.3.0/README.md
http://www.aoc.nrao.edu/~cwalker/sched/sched.html
https://docs.scipy.org/doc/numpy/f2py/
http://www.json.org/
https://www.evlbi.org/
https://git-scm.com/
http://www.vlbi.org/vex/
https://safe.nrao.edu/wiki/bin/view/VLBA/Vex2
http://www.astro.caltech.edu/~tjp/pgplot/
https://www.qt.io/
https://matplotlib.org/
https://pypi.org/
https://www.anaconda.com/
https://bottlepy.org/

	Introduction
	Re-factoring
	Keyin reader
	COMMON blocks to Python classes
	Translation of SCHED functions

	New features
	Automatic catalogue updates
	DBBC 2 support
	VEX 2
	Experiment intent for scans
	TSCAL in frequency catalogue
	Interactive plots
	Easy installation
	Command line arguments and readline
	Programmable input

	Resources

