
JUMPING JIVE

730884 — JUMPING JIVE — H2020-INFRADEV-2016-
2017/H2020-INFRADEV-2016-1

Deliverable 8.2

Submission date: 19.07.2017

1

Ref. Ares(2017)3641302 - 19/07/2017

Jumping JIVE, deliverable D8.2: Document
on SCHED

Bob Eldering, Mark Kettenis, Des Small, Arpad Szomoru

1.INTRODUCTION...2

2.BACKGROUND...2

3.FEEDBACK FROM FORUM..3

4.PLAN OF ACTION..4

5.SCHED CATALOGUE FILES AND KEYIN FORMAT..6

6.SCHED AND VEX..8

7.F2PY...9

7.1.Replacement of main program... 10

7.2.Reorganising Fortran data structures...14

8.CONCLUSION..16

REFERENCES..17

1. Introduction

The full title of this deliverable is “Document detailing what functionality
of SCHED will be re-written, and method to be followed, based partly on
input from SRFF”, where SRFF stands for the SCHED Re-Factoring
Forum, a group of SCHED experts and advanced users.

2

2. Background

The program SCHED was written in the early 1980s in order to provide a
common, generalised user interface for scheduling VLBI observations. It
does so by combining observing parameters, source catalogues and
frequency setup catalogues, which describe the detailed settings at all
different stations. This is by no means trivial, considering that all
telescopes are different, in terms of location, architecture, hardware
limitations, equipment and frequency coverage. The resulting schedule
comes in the form of a so-called VEX file, for which an international
standard was defined, a plain-text human-readable equivalent of a
database. This file is sent to the stations, where the control computer
parses the schedule and translates it into a series of commands to the
telescope control system and the recording/transmitting equipment. The
decades-old code base makes the program extremely hard to modify in
order to adapt it to the modern-day demands of VLBI networks.

The aim of this task is to re-factor the existing code, rather than re-writing
all from scratch. This will be done by separating out well-defined bits of
functionality and re-writing these as individual modules in a modern
language. In this way a “gold standard” will remain available throughout
the process, enabling an incremental replacement of the original code
base. Static parts of the code that do not need frequent modifications will
be kept as they are. The end product will be a modernised version of
SCHED that will be far easier to adapt, written in a widely used and well-
known programming language. It will be usable for all aspects of the
proposal-observational cycle, which means during the proposal phase,
the programming by the PI and finally the actual generation of an
observing schedule by JIVE staff. This functionality will be essential for
VLBI users in the SKA era. As an aside, a forum of SCHED experts and
users will be set up, to ensure that the engineering effort will keep the
different needs of different VLBI networks in mind.

3

3. Feedback from forum

One telecon was convened with the SCHED Re-Factoring Forum, on
April 4 2017. Apart from explaining the scope of the project and their
involvement to the members, they were asked to provide a wishlist with
possible improvements and modifications of the software. This list would
not be used as a to-do list by the developers, but rather serve as a
reminder of what modifications the project in the end should enable. The
main items on that list are

 PGPLOT, the plotting package used in SCHED was mentioned
several times, as being hard to install and problematic for many
reasons.

 Support for VEX 2 (Section 6), which will be needed soon.

 Migrating catalogs to a central database or revision controlled
repository. However the off-line use of SCHED should remain
possible.

 An integrated sensitivity calculator would be useful.

 Keep up with hardware changes.

4. Plan of action

Through discussions and investigations of the functionality of SCHED
and the way it is currently used, the team at JIVE set out to specify the
overall goal of the project, the way to reach this goal and the actions
needed.

4

Very early on, the decision was made that Python would be used in this
project. Its broad acceptance in the astronomical community, extensive
scientific libraries and ease of use make it a natural choice.

The current SCHED code exists in an SVN repository at NRAO. As this
project intends to involve outside parties in the development of new
functionality, a GitHub repository was created (jive-vlbi), where a copy of
the SCHED code, including history, will be stored. This copy will be a
tracking branch, and will be kept up-to-date with the “official” SVN
version.

At first, the translation of Fortran data structures into C was considered,
combined with the use of SWIG [1] to access these data structures from
Python. However, soon it transpired that SWIG needs dynamically linked
libraries. This led the team to f2py [2], a project within numpy, which
creates Python modules to interface to Fortran. Although this provides
no access to Fortran parameters, this was not considered to be a show-
stopper.

Wrapping SCHED’s top level subroutines with Python modules would
allow us to replace the main program with a Python version.

Having decided on the language, environment and interface, a number
of specific cases were selected for implementation.

1. Replace the SCHED reader: a Python keyin reader already exists
but most likely will need modifications.

2. Implement VEX2 support: fairly urgently needed.
3. Implement support for the Polyphase Filter Bank (PFB) mode of

the DBBC backend, used throughout the EVN.

Item 3 in this list will only be attempted after the first two items are
successfully completed. These two are well defined sub-projects that will

5

be very instructive and will help determine how to move to more
complicated issues.

After this, more features will be tackled, depending on available
resources, after consultation with the SRFF. We will also investigate
PGPLOT alternatives, notably the Giza Python package based on the
Cairo library [3].

In the following sections some detailed technical background is given.

5. SCHED catalogue files and Keyin format

The SCHED distribution includes a set of catalogues of source positions
and station configuration information, which are specified using the
"keyin" format. As section 1.2 of the SCHED manual states (p.8): "All
input parameters to SCHED are in the keyin free format, named after
Tim Pearson’s subroutine that is used to read it. The important features
of that format for SCHED are described here. This description is not
complete and users of the Caltech package should refer to other
documentation for useful capabilities of keyin input that are not normally
used for SCHED."

The keyin format is also used in AIPS for TSYS files, but otherwise has
not been widely adopted. The specification in the SCHED file is informal;
in practice the precise specification is the interpretation that SCHED (or
AIPS) gives a keyin file when it is read. Any attempt to move SCHED into
the Python era will require addressing this component: Fortran is not a
language well suited to parsing and string handling, and parsers
developed in Fortran can be hard to maintain and often (as here) do not
follow a precise formal specification.

6

A few years ago, one of the authors of this document (Des Small) built a
keyin reader in Python, which has since found a use in the part of the
CASA package that imports AIPS-style TSYS data. The data is imported
into Python dictionaries, from which it is straightforward to export it to, for
example json. An entry in the source catalogue in keyin format:

SOURCE='2358+189','J0001+1914'
 RA=00:01:08.6215684 DEC= 19:14:33.801700 RAERR= 0.017
DECERR= 0.029 CALCODE='V'
 REMARKS='GSFC 2015a astro solution, unpublished 2396
observations.'
 FLUX = 2.20, 0.07, 0.07, 8.40, 0.12, 0.11 FLUXREF = 'gsfc2014b'
/

is transformed by this code into json format as:
 {
 "CALCODE": "V",
 "DEC": 69273.8017,
 "DECERR": 0.029,
 "FLUX": [
 2.2,
 0.07,
 0.07,
 8.4,
 0.12,
 0.11
],
 "FLUXREF": "gsfc2014b",
 "RA": 68.6215684,
 "RAERR": 0.017,
 "REMARKS": "GSFC 2015a astro solution, unpublished 2396
observations.",
 "SOURCE": [
 "2358+189",
 "J0001+1914"
]
 }

7

Note that neither Python nor Json dictionaries preserve order, and the
latter also doesn't permit comments, which may make it unsuitable for
catalog management. The Python keyin reader also doesn't have a
formal specification, partly because it is subject to revision when
examples are found where its interpretation differ from the official Fortran
parser, and it doesn't support even some of the documented features of
the format, such as inline arithmetic, which are not in practice used in the
catalogues.

The Python code is, however, short (under 250 lines, including
whitespace and comments) and straightforward. The parsing is done by
recursive descent, while tokenising is done by regular expressions.

6. SCHED and VEX

VEX (VLBI EXperiment) is a standard for expressing VLBI experiment
schedules. Schedules in VEX format are used by most VLBI telescopes.
SCHED can create VEX schedules and this is its default output format.
The current version of the standard is 1.5 [4], which has been in use
since the late 1990s.

An update to the standard is in progress and nearing completion [5]. This
new version will be released as version 2. The main goal of this
update is to support a wider range of VLBI data acquisition hardware
as version 1.5 is not capable of properly describing the current
generation of VLBI equipment. This is achieved by the introduction of a
much more flexible description of equipment and how this equipment is
connected together. This makes it much easier to specify schedules for
data acquisition systems that consist of multiple parallel (digital) back-
ends and/or recorders. But VEX 2 includes many additional
improvements such as support for complex sampling, observation of
spacecraft, specification of intent, etc.

8

The plan is to extend SCHED to emit VEX 2 alongside VEX 1.5 to assist
the verification process of VEX 2. The ability to create a VEX 2
schedule is a pre requisite to testing the software that executes
schedules at the telescopes such as the NASA Field System used
at most EVN telescopes. Extending SCHED with VEX 2 support will be
be done through a new implementation in Python which will leverage the
work done to make SCHED's internal data structures available in
Python. We expect that this will be less work than extending the
existing VEX 1.5 code written in Fortran as string handling/formatting
is much easier to do in Python. The initial implementation will focus
on supporting the DBBC digital backend in combination with the
FILA10G board as this is the most common hardware combination in the
EVN that isn’t supported properly in VEX 1.5. The ability to create both
VEX 1.5 and VEX 2 schedules will allow us to verify the new
implementation by comparing the output of schedules created for the
DBBC with and without a FILA10G.

Once the VEX 2 implementation has been finished and tested we will
consider adding VEX 1.5 support as well. The basic structure of VEX
1.5 and VEX 2 is the same so this would be a relatively low effort.
This would allow us to completely replace the existing Fortran VEX
code in SCHED with something that is much easier to maintain in the
future.

7. f2py

As mentioned earlier, in order to interface from Python to the Fortran
SCHED code, we use a program called f2py. F2py takes Fortran code
and generates a Python extension module. This Python module exposes
the Fortran subroutines as Python functions and the Fortran COMMON
blocks as Python classes.

9

F2py is part of the NumPy project. NumPy is a package for scientific
computing in Python [6]. One of the main features of NumPy is that it
provides multidimensional array objects. F2py uses these
multidimensional arrays to represent Fortran arrays.

To determine whether f2py would be suitable for our purposes, we had to
show it would work for two specific cases. The first case is to replace the
SCHED main program with Python code.

The second case consists of creating methods to reorder Fortran data
structures. The Fortran data structures used in SCHED consist mainly of
multiple arrays of single data elements, where in a modern programming
language one would use an array of structures containing these data
elements. We want to apply this reorganisation to the data structures
representing the station catalogs.

7.1. Replacement of main program

We first list the SCHED main program, followed by the Python version.

Main program, Fortran:

 PROGRAM SCHED
 INCLUDE 'sched.inc'
 INCLUDE 'schset.inc'
 INCLUDE 'schfreq.inc'
 INCLUDE 'srlist.inc'
 LOGICAL MKFILES, RESTART

 CALL VERSCHED(VERNUM, VERSION)
 CALL STMSG

 RESTART = .FALSE.

 100 CONTINUE

10

 NSET = 0
 SRLN = 0

 CALL INPUT
 CALL DEFAULTS
 CALL SCHPRE
 CALL CHKSC1
 CALL SCHOPT
 CALL DOPFQ
 CALL GETSUN
 CALL CHKSCN
 CALL SCHSUM(RESTART)
 CALL FLUXH(ILOG, LOGFILE)
 CALL PLOTTER(MKFILES, RESTART)
 IF(RESTART) THEN
 CALL DELSCR(RESTART)
 CALL WLOG(0, ' ')
 CALL WLOG(0,
 1 ' =================== RESTART ===================== ')
 CALL WLOG(0, ' ')
 GO TO 100
 END IF

 IF(MKFILES .AND. OPTMODE .NE. 'UPTIME' .AND. .NOT. NOSET) THEN
 CALL SCNRANGE
 CALL OMSOUT(RESTART)
 CALL VEXOUT
 IF(DOVSOP) CALL VSOPWRT
 CALL FLAGS
 CALL STAFILES
 END IF

 CALL DELSCR(.FALSE.)
 CALL PUTOUT(' ------- Finished ----------- ')
 STOP
 END

Running f2py on all the called subroutines results in a Python module
which we have named “schedlib”. This is then incorporated in a Python
version of the main program:

11

Main Program, Python:

import schedlib

schedlib.vern.vernum, schedlib.verc.version = schedlib.versched()
schedlib.stmsg()

restart = False

while True:
 schedlib.setn1.nset = 0
 schedlib.srlis.srln = 0
 schedlib.input()
 schedlib.defaults()
 schedlib.schpre()
 schedlib.schopt()
 schedlib.dopfq()
 schedlib.getsun()
 schedlib.chkscn()
 schedlib.schsum(restart)
 schedlib.fluxh(29, schedlib.schsco.logfile)
 mkfiles, restart = schedlib.plotter(restart)

 if restart:
 delscr(restart)
 wlog(0, " ")
 wlog(0, " =================== RESTART ===================== ")
 wlog(0, " ")
 else:
 break

if mkfiles and schedlib.schsco.optmode != "UPTIME" and not schedlib.schcon.noset:
 schedlib.scnrange()
 schedlib.omsout(restart)
 schedlib.vexout()

 if schedlib.schcon.dovsop:
 schedlib.vsopwrt()

 schedlib.flags()
 schedlib.stafiles()
 schedlib.delscr(False)
schedlib.putout(" ------- Finished ----------- ")

12

As can be seen, the translation from Fortran to Python is quite
straightforward. The most notable differences are:

 When a Fortran function changes the value of an argument, the
corresponding Python version of the function returns the new
values instead (see the functions versched and plotter). This a
more natural way to handle output parameters in Python, since the
Python built-in types int (vernum), string (version) and bool (restart
and mkfiles) are immutable, which makes using them as output
parameters impossible.

 F2py does not automatically detect output parameters, these have
to be manually marked. This is done in the so-called signature file
which f2py generates as an intermediate product. The signature
file contains the signature of the Fortran functions and COMMON
blocks that have been extracted from the source code. For
example, the part of the signature file which represents the
function versched looks like this:

subroutine versched(vernum,version) ! in :schedlib:Sched/versched.f
 real :: vernum
 character*(*) :: version
 end subroutine versched

Since version is an output parameter now, the length of the string
has to be specified. The number 40 is derived from the only call to
versched, in the sched main program.

subroutine versched(vernum,version) ! in
:schedlib:Sched/versched.f
 real intent(out) :: vernum
 character*(40) intent(out) :: version
 end subroutine versched

It is also possible to guide the code generation of f2py by adding
comments starting with Cf2py in the Fortran code. In this case the
intermediate step of creating the signature file can be skipped.

13

 The Fortran version includes multiple files, which results in all
functions and variables defined in those files being available in the
main program. The Python version only imports a single module,
all functions and COMMON blocks are available from that module.

 The GOTO logic has been replaced by a while loop.

Running the Verify test script (from the examples/ subdirectory) using the
Fortran and Python version of the main program produces the same
output files.

7.2. Reorganising Fortran data structures

Below is the Python code that uses the Fortran COMMON blocks
exposed by the f2py generated module schedlib, to make objects that
gather all data from the station catalogs on a per station basis. Most of
the lines of code simply define which Fortran variables are to be
reordered into the Python structures.

import schedlib as s

import numpy

class StationCatalog(object):
 """
 INTEGER ISCHSTA(MAXCAT), MJDRATE(MAXCAT)
 CHARACTER STATION(MAXCAT)*8
 CHARACTER STCODE(MAXCAT)*3
 CHARACTER STCODEU(MAXCAT)*3
 DOUBLE PRECISION XPOS(MAXCAT), YPOS(MAXCAT), ZPOS(MAXCAT)
 DOUBLE PRECISION DXPOS(MAXCAT), DYPOS(MAXCAT), DZPOS(MAXCAT)
 DOUBLE PRECISION ELEV(MAXCAT), LAT(MAXCAT), LONG(MAXCAT)
 CHARACTER POSREF(MAXCAT)*80
 CHARACTER CONTROL(MAXCAT)*4, MOUNT(MAXCAT)*5
 CHARACTER DAR(MAXCAT)*5, RECORDER(MAXCAT)*6
 CHARACTER DISK(MAXCAT)*6, MEDIADEF(MAXCAT)*6
 CHARACTER TSCAL(MAXCAT)*4, DBBCVER(MAXCAT)*8

14

 INTEGER NBBC(MAXCAT), STNDRIV(MAXCAT), NHEADS(MAXCAT)
 LOGICAL VLBADAR(MAXCAT), USEONSRC(MAXCAT)
 INTEGER NHORIZ(MAXCAT)
 REAL HORAZ(200,MAXCAT), HOREL(200,MAXCAT)
 INTEGER NAXLIM(MAXCAT)
 REAL AX1LIM(6,MAXCAT), AX2LIM(6,MAXCAT)
 REAL AX1RATE(MAXCAT), AX2RATE(MAXCAT)
 REAL AX1ACC(2,MAXCAT), AX2ACC(2,MAXCAT)
 REAL TSETTLE(MAXCAT), MINSETUP(MAXCAT)
 REAL MAXSRCHR(MAXCAT), TLEVSET(MAXCAT)
 REAL ZALIM(MAXCAT), AXOFF(MAXCAT)
 """

 class StationCatalogEntry(object):
 def __init__(self, **kwargs):
 for key, value in kwargs.items():
 setattr(self, key, value)

 maxcat = s.schsta.ischsta.shape[0]
 block_items = {
 s.schcst: [
 'control', 'dar','dbbcver', 'disk', 'mediadef', 'mount', 'posref',
 'recorder', 'station', 'stcode', 'stcodeu', 'tscal'],
 s.schsta: [
 'ax1acc', 'ax1lim', 'ax1rate', 'ax2acc', 'ax2lim', 'ax2rate',
 'axoff', 'dxpos', 'dypos', 'dzpos', 'elev', 'horaz', 'horel',
 'ischsta', 'lat', 'long_bn', 'maxsrchr', 'minsetup', 'mjdrate',
 'naxlim', 'nbbc', 'nheads', 'nhoriz', 'stndriv', 'tlevset',
 'tsettle', 'useonsrc', 'vlbadar', 'xpos', 'ypos', 'zalim', 'zpos']
 }

 def read(self):
 # gather a copy (because .T returns a view) of all arrays in C-order
 arrays = {item: getattr(block, item).copy().T
 for block, items in self.block_items.items()
 for item in items}
 # create an entry for each index of the arrays
 self.entries = [
 self.StationCatalogEntry(
 **{key: value[i] for key, value in arrays.items()})
 for i in range(self.maxcat)]

 def write(self):
 for block, items in self.block_items.items():

15

 for item in items:
 new_value = numpy.array([getattr(self.entries[i], item)
 for i in range(self.maxcat)],
 dtype=getattr(block, item).dtype)
 # f2py has a bug which doesn't allow setting arrays of strings
 # as a work-around, get a view and assign to that
 getattr(block, item).T[:] = new_value

if __name__ == "__main__":
 s.input()
 s.defaults()

 c = StationCatalog()
 c.read()

 c.entries[0].stcode = "Fo "

 c.write()

The class StationCatalog has two methods, read and write. read
translates the COMMON blocks into easier to use Python structures (the
StationCatalog.entries list). write writes the data back into the COMMON
blocks, such that subsequent calls to Fortran code will use the changed
value.

The code in the if __name__ == "__main__": block demonstrates that
this read-write round trip works.

8. Conclusion

In this document we have outlined a way to start the re-factoring of the
SCHED program. We show that creating an interface to Python using
f2py is feasible, and have identified a number of features that will be
tackled first. This will lay the foundations for a SCHED that is easier to
modify, expand and maintain.

16

References

[1] http://www.swig.org/
[2] https://docs.scipy.org/doc/numpy/f2py/index.html
[3] http://giza.sourceforge.net/)
[4] http://www.vlbi.org/vex/
[5] https://safe.nrao.edu/wiki/bin/view/VLBA/Vex2
[6] https://docs.scipy.org/doc/numpy/index.html

17

http://www.swig.org/
https://docs.scipy.org/doc/numpy/index.html
https://safe.nrao.edu/wiki/bin/view/VLBA/Vex2
http://www.vlbi.org/vex/
http://giza.sourceforge.net/)
https://docs.scipy.org/doc/numpy/f2py/index.html

	1. Introduction
	2. Background
	3. Feedback from forum
	4. Plan of action
	5. SCHED catalogue files and Keyin format
	6. SCHED and VEX
	7. f2py
	7.1. Replacement of main program
	7.2. Reorganising Fortran data structures

	8. Conclusion
	References

